Prepared for:

Captiva Erosion Prevention District

March, 1999

COASTAL PLANNING & ENGINEERING, INC.

Prepared For:

Captiva Erosion Prevention District

Prepared By:

Coastal Planning & Engineering, Inc.

March, 1999

TABLE OF CONTENTS

INTRODUCTION	1
Purpose and Scope Description of the Study Area History of Blind Pass	
INLET CHARACTERISTICS	3
Hydraulic Characteristics	Shoal
PROPOSED INTERIM DREDGING.	12
Figure No.	List of Figures
Figure 2 1989 Bathymetric/Topograph Figure 3 1989-1998 Flood Shoal Char Figure 4 Stability Curve Figure 5 Habitat Survey	hic Survey
Lis	st of Appendices
Appendix B	Core Logs Gradation Analysis Reports Grain Size Distribution Curves

INTRODUCTION

Authorization

At its meeting of November 12, 1998, the Captiva Erosion Prevention District (CEPD) authorized Coastal Planning & Engineering, Inc. of Boca Raton, Florida to conduct a hydraulic study and permitting for the interim dredging of Blind Pass. The study is funded by the State of Florida Department of Environmental Protection, West Coast Inland Navigation District, Lee County, City of Sanibel, and the CEPD.

Purpose and Scope

The purpose of the study is to evaluate the need for and feasibility of an interim dredging of the flood shoal in Blind Pass. Concerns have been raised that recent shoaling in the pass will lead to complete closure. Closure will interrupt tidal exchange and flushing in the Blind Pass/Dicken Bayou/Pine Island Sound system, causing a degradation of water quality. The proposed dredging project is designed to return sand that has deposited within the inlet since 1989 back onto adjacent beaches and restore flushing through the pass. This project will be an interim step, while the Florida Department of Environmental Protection completes and adopts the implementation plan for the Blind Pass Inlet Management Plan.

The study includes bathymetric surveys of the flood shoal and channel, tidal and flow measurements in the pass, collection of sediment samples, a biological survey, analysis of data, and recommendations for needed dredging.

Description of the Study Area

Blind Pass is located in Lee County on the Gulf Coast of South Florida, approximately 90 miles south of the entrance to Tampa Bay. The Gulf coastline consists of a series of barrier islands broken by passes (tidal connections) separated from the mainland by shallow tidal lagoons.

Blind Pass is bounded on the north by Captiva Island and on the south by Sanibel Island, and connects Pine Island Sound to the Gulf of Mexico. Captiva Island is about 5 miles long, and varies in width from about 200 feet near the south end to about 2,000 feet between the center and north end. Sanibel Island is approximately 13 miles long and varies in width from about 2 miles near the eastern end, to about ½ mile at the northwestern end. Natural ground elevations are generally less than 10 feet.

The adjacent inlet to the north is Redfish Pass. To the south an inlet is intermittently open to Clam Bayou and Old Blind Pass water bodies. At the south end of Sanibel Island, Pine Island Sound drains directly to the Gulf through San Carlos Bay entrance.

Access to both islands is by toll bridge from the mainland. Captiva can be reached by traveling north along Sanibel, then across the bridge over the channel of Blind Pass.

The Blind Pass study area includes a main channel (Wulfert Channel), connecting the Gulf of Mexico to Pine Island Sound, and an arm of Dinken Bayou. The project study area is bounded by the Gulf of Mexico approximately 900 feet south of the bridge, on the north by a line in Wulfert Channel approximately 2,000 feet north of the bridge, on the west by Captiva Island, and on the east by a line in Dinken Bayou, approximately 1,100 feet east of the center of the bridge.

History of Blind Pass

Blind Pass is a natural inlet that has existed for as long as 1,000 years, although its location has migrated at various times. This history is detailed in the Blind Pass Inlet Management Plan (CPE, 1993).

Prior to the opening of Redfish Pass, in 1921, Blind Pass was a more substantial inlet with a larger tidal prism. The Blind Pass ebb shoal associated with the larger (pre-Redfish Pass) tidal prism probably helped maintain the seaward position of the south end of Captiva Island and the north end of Sanibel Island.

When Redfish Pass opened, it captured a significant portion of the tidal prism of Blind Pass, making Blind Pass a smaller, more unstable inlet. The ebb shoal of Blind Pass migrated to shore and no longer provided protection for southern Captiva and northern Sanibel. The inlet cross section decreased (due to shoaling) to the point of complete closure of the channel. A cycle ensued in which Blind Pass was opened by storms and closed by shoaling. By 1964, the spit had once again migrated to the south and closed the pass. The pass was not reopened again until 1972 following Hurricane Agnes.

In 1972 a terminal groin was installed by Lee County on the north side of the pass, to protect the bridge by stabilizing the beach to the north at Turner Beach Park. The pass was closed again between 1975 and 1980. The pass was reopened in its present position by a subtropical storm in June of 1982.

In October and November of 1988, the terminal groin on the north side of Blind Pass was extended 100 feet, to stabilize the beach nourishment material which was placed along Captiva Island. In 1996 additional fill was placed on Captiva's beaches to allow sand movement through and around the groin to Sanibel Island. The beaches south of the pass along the first mile of Sanibel Island were nourished to provide both recreational beach at a public park and storm protection for the hurricane evacuation route. The nourishment helped reinstate the littoral budget of sand around the inlet, and to mitigate for the affects of road and beach improvements since 1972.

Subsequent to fill placement, increased shoaling has been observed in the interior of Blind Pass. This shoaling was confirmed by surveys in 1998.

Inlet Management Plan

The Florida Department of Environmental Protection, in partnership with Lee County and Captiva Erosion Prevention District, sponsored an inlet management study of Blind Pass. The study, <u>Blind Pass Inlet Management Plan</u> (Coastal Planning & Engineering, Inc., 1993) and the updated information provided in 1998, was conducted under the provisions of Section 161.161, F.S., to evaluate the erosion impact of the inlet on adjacent beaches, and to recommend corrective measures to mitigate identified impacts. A technical advisory committee, which included Lee County, West Coast Inland Navigation District, Captiva Erosion Prevention District, City of Sanibel, and the Florida Department of Environmental Protection, was formed to recommend an implementation plan for inlet management.

The Florida Department of Environmental Protection is currently evaluating the study and updated material, and developing the implementation plan for inlet management activities.

INLET CHARACTERISTICS

Inlet Bathymetry/Topography, Flood Shoal

The study area was surveyed in November, 1998, using standard land survey methods. The survey consisted of approximately fifty transects on 100' stations, with survey offsets typically 20' or at noticeable breaks in elevation.

The pass area consists generally of a main channel (Wulfert Channel), leading from the Gulf of Mexico to Pine Island Sound, and a side channel (Dinken Bayou) which surrounds a mangrove island called Albright Key (see Figure 1). In Wulfert Channel, the tidal channel lies adjacent to Captiva Island, with a bottom elevation generally about -3 NGVD. Outside the tidal channel is a flood tidal shoal that is exposed except at high tide. In Dinken Bayou, the flood tidal shoal has essentially blocked the tidal channel on the south side of Albright Key. Easterly of the shoal, remnants of a tidal channel exist with a bottom elevation of about -1 NGVD. This tidal channel leads to deeper water on the east side of Albright Key.

A 1989 survey (see Figure 2) indicates that the tidal channels in Blind Pass were better defined, and the flood shoal smaller, than in 1998. The tidal channel in Wulfert Channel was wider (130 – 220 feet) and deeper (bottom elevations –4 to –6 NGVD). In Dinken Bayou, the tidal channel was connected to Wulfert Channel, and had bottom elevations of –2.5 to –3 NGVD.

The 1998 bathymetry was compared to data collected in 1989 to assess volumetric changes in the period (see Figure 3). While the 1989 survey did not cover the entire 1998 study area, this comparison indicates significant accretion in Blind Pass. On average, the pass has accreted 2-3' of sand, with maximum accretion of 6' at the bridge.

BLIND PASS LEE COUNTY, FLORIDA 1998 BATHYMETRIC / TOPOGRAPHIC SURVEY

COASTAL PLANNING & ENGINEERING, INC.

BLIND PASS

LEE COUNTY, FLORIDA

1989 vs. 1998 BATHYMETRY / TOPOGRAPHY

COASTAL PLANNING & ENGINEERING, INC.

Hydraulic Characteristics

The tidal and current characteristics of the pass were measured on December 18 and 23, 1998. Velocity measurements were conducted during flood and ebb tides within the main channel using a low flow rotor at a stationary position. Data collected included hourly measurements of current velocities in the main tidal bore, and infusion of uranine marking dye at two locations in the mid-tide range, for an evaluation of surface flows using distance over time measurements.

Blind Pass Hydraulic Analysis

This analysis evaluates the change in tidal prism as a result of re-establishing a 660 square foot cross sectional area. The hydraulics of Blind Pass was modeled using Keulegan's relationships. The tide at Blind Pass is mixed with a stronger diurnal tide. As the tide period varies from 10.5 hours to 25 hours, the tide range increases from 0.7 feet to 3.7 feet (January 1999). The resulting tidal prisms also vary significantly as indicated in Table 1.

Table 1 Estimated Tidal Prism At Blind Pass

Condition	Tide Period xisting (120ft²)	0.7 ft. 10.5 hrs	3.7 ft. 25 hours
Existing (120ft ²)		$6.5 \times 10^6 \text{ft}^3$	35.9 x 10 ⁶
Proposed (660ft ²)		$28.3 \times 10^6 \text{ft}^3$	154.4 x 10 ⁶

The analysis indicates that the dredging of Blind Pass should increase the tidal prism over four times the existing quantity. This will improve water quality by improving the flushing of the Blind Pass/Dinken Bayou/Pine Island Sound area.

Stability Analysis

Inlet stability refers to an inlet's ability to remain open while sand is transported to the inlet. A preliminary analysis was made to evaluate the likelihood of the proposed channel remaining open. The previously described hydraulic calculations were extended to form a stability curve (Figure 4) as proposed by Escoffier (1967). The intersection of the proposed and existing curves with Obriens Equilibrium velocity curve on the right hand side of the curve indicates that a stable cross section will be 1200±sqft. Cross sections of 600±square feet are near the top of the curves which indicate that if sufficient sand is transported to the inlet the inlet could shoal and close. This appears to have occurred since the 1996 nourishment. Therefore, the following conclusions and recommendations are made:

 Dredging of a 660 sq. ft. channel will recreate the 1989 flow cross section and tidal prism. Improvements in water quality should be expected.

HYDRAULIC STABILITY CURVES

Figure 4

- 2. While a 660 square foot cross section is stable, the inlet should not be expected to remain open permanently. Based on the inlet history, a probable duration of inlet stability is 2 to 10 years.
- 3. Excavation of a 1200± square foot channel will provide greater long term stability. This may be viewed by the State as a significant improvement of a non-navigable inlet and may not be permitted.

Sediment Characteristics

Sediment core samples were collected on November 24 and 25, 1998. Sediment cores to a depth of 4' below bottom were collected at 10 locations in the study area (see Figure 1). Results of the analysis of these cores were used to determine the compatibility of dredging material from the proposed channel with the present beach material characteristics. In addition, the results were used in establishing the horizontal limits of dredging.

The cores were returned to the laboratory and split in half for analysis. Samples for sieve analysis were taken from one half while the other half was left undisturbed and archived. Visual descriptions, including an estimate of the effective length of each sample, were determined by texture changes (Appendix A). Sediment samples for analysis were taken from distinct layers within the core and a mechanical sieve analysis was performed on all samples. A total of 22 samples were analyzed.

Sieve analysis were performed in accordance with the American Society for Testing and Materials (ASTM) standard methods designation D 422-63 for particle-size analysis of soils (ASTM, 1987), and in accordance with the Shore Protection Manual (SPM, 1994 ed.) and TPG 77-6 "Review of Design Elements for Beach Fill Evaluation". These methods cover the quantitative determination of the distribution of sand size particles. The sieves used for the analysis were U.S. standard sieve sized (1/2 phi intervals) Nos. 230, 200, 170, 120, 80, 60, 45, 35, 25, 18, 14, 10, 7, 5, 5/16 inch and 5/8 inch.

The results from the sieve analysis were entered into a gradation analysis computer program that computes mean and median grain size, sorting (Folk Graphic and Moment Methods), silt percentage, and the phi-16 and phi-84 values for each sediment sample and composites.

The silt percentage was reported as the value identified as finer than the No. 200 (0.074mm) sieve, which is the amount of silt washed out of the sample on the washing sieve and the amount passing the No. 200 sieve after sieving. Gradation analysis reports (Appendix B) and grain size distribution curves (Appendix C) were computed for each core sample.

There are two main characteristics of sand in the study area that will determine its suitability as beach fill. The first is the mean grain size; the coarser the sand, the slower the erosion. The second characteristic is the amount of silt it contains. Silt is the very fine fraction of the fill that can affect water quality. High levels of silt will cloud the water and could can environmental damage. Permitting agencies often object to high silt

quantities. If sands are located with silt quantities in levels less than 10%, we do not anticipate that the agencies will object to permitting the material.

The composite mean grain size of the cores varies from 0.18mm to 1.28mm, with coarser material generally toward the gulf, and finer material generally toward Pine Island Sound. Material consists of layers of sand and sand/shell hash, indicating deposition from the Gulf and from material eroded from adjacent beaches. The percentage of silt for the 10 cores ranges from 1.2% nearest the Gulf to 18.2% nearest Pine Island Sound.

The eastern and southern limits of dredging were established to use sand with less than 10% silt. This eliminated the area of cores 9 and 10. The material in the resulting project area have mean grain sizes ranging from 0.29mm to 1.28mm (average 0.58mm), with silt contents ranging from 1.2% to 6.2% (average 3.1%). The dredged material is, therefore, compatible with the existing beach sand, which has a mean grain size of 0.53mm with 2.46% silt. The overfill ratio for the fill placement is 1.01.

Natural Resource Characteristics

A habitat survey of the study area (see Figure 5) was conducted on November 24, 1998. The survey was conducted to assess the environmental conditions within Blind Pass for the interim dredging of the channel and flood shoal area. The study area was surveyed at low tide. Weather conditions were sunny with a light chop. Underwater visibility was approximately four feet. Due to these favorable conditions, bottom conditions were noted by walking and wading. Each area was surveyed by the inspection of the bottom conditions on several passes through the study area, tying locations to the bathymetric survey baseline.

The survey revealed relatively shallow conditions along the length of the historic location of the channel, ranging from exposed to approximately 3' deep water at low tide. A majority of the study area is constantly exposed except during high tides. Surface and sub-bottom soil conditions were sampled by cores taken by CPE on November 24 and 25, 1998.

The benthic organisms identified occurred only north of the bridge and consisted primarily of red algae (*Gracialaria* sp.) And some patches of marine algae. Scattered polychaetes, snails, hermit (*Sesarma* sp.) and fiddler crabs (*Uca* sp.), horse conch (*Pleuroploca gigantea*), and Florida cone (*Conus floridana*) were also noted [in areas A and B??]. Pelagic organisms observed in the study area included horseshoe crabs (*Limulus* sp.), blue crabs (*Callinectes sapidus*), mullet (*Mugil* sp.), schooling "baitfish", and lobate comb jellies (*Mnemiopsis* sp.). Oysters (*Crassotrea* sp.), barnacles (*Balanus* sp.), and soft coral have colonized the rip rap along the northwest side of the channel and pilings on the docks. There were no seagrass beds or oyster bars identified within the project area. One living oyster bar (30' diameter) was identified approximately 1800' north of the bridge.

FIGURE 5

BLIND PASS LEE COUNTY, FLORIDA HABITAT SURVEY

COASTAL PLANNING $\stackrel{11}{\&}$ ENGINEERING, INC.

PROPOSED INTERIM DREDGING

The proposed channel cuts in Blind Pass and Dinken Bayou were defined as seen in Figure 6. The project will generally replicate the 1989 conditions. These cuts will dredge approximately 78,500 cubic yards of material from Blind Pass. Dredged material will be placed on Sanibel Island, between DNR monuments R-115 and R-119. This area is south of the 1996 fill placement area, and is an area that has experienced noticeable recent erosion.

The design will increase the tidal prism over four times from the existing condition. This will result in improved flushing of the Blind Pass/Dinken Bayou/Pine Island Sound area, thus improving water quality. The selected cross section will be marginally stable, but should not be expected to remain open permanently. The probable duration of the inlet will be 2 to 10 years.

Sediments in the selected project area are compatible with those of the existing beaches in the deposition area on Sanibel Island. Mean grain size of the material is similar to the existing beach material, and the proportion of silt size material is low.

Dredging in the project area will not adversely impact natural communities. There are no seagrass beds or oyster beds in the project area. While threatened and endangered species, including marine turtles and manatees, are known in the area, standard programs for monitoring, avoidance, and relocation will protect these species.

Initial review by the Florida Department of Environmental Protection indicates that a permit modification will not be allowed. Therefore, a full permit application is required. This longer permit process will mean that dredging cannot be completed before marine turtle season. Additional marine turtle protection conditions, including nest relocation, daily monitoring, and nest protection may be required if construction is allowed during turtle nesting season.

FIGURE 6

BLIND PASS LEE COUNTY, FLORIDA CHANNEL DREDGE LIMITS

COASTAL PLANNING & ENGINEERING, INC.

APPENDIX A

CORE LOGS

DRIL	LING LOG DIVISION			INS	Hole No.BP-98#1						
. PROJE	CT			10. 5	SIZE AND	TYPE		- 1			
	D PASS		SHOAL s or Station)	11. D	ATUM FO		ATION SHOWN (TBM or MSL)				
X=43	9,916 Y	=780,8			NGVD 12. MANUFACTURER'S DESIGNATION OF DRILL						
CPE	ING AGEN	7000 		H	HAMMER			_			
. HOLE	NO. (As si	no mwon	drawing title		13. TOTAL NO. OF OVERBURDEN SAMPLES TAKEN disturbed: undisturbed: 2						
	OF DRILL		BP-98#1	14. 1	TOTAL NU	JMBER (OF CORE BOXES 1				
LM, J	W TION OF	101 5					UND WATER NA				
	RTICAL	75000	INFO	16. L	JATE HOL		25/98 11/25/98				
	NESS OF			17. E	LEVATIO	N TOP	OF HOLE -2.1 Ft.				
	DEPTH DRILLED INTO ROCK 0 Ft.						COVERY FOR BORING 50 %				
. TOTAL	DEPTH 0	F HOLE	4.0 Ft.		. DALES		EOLOGIST				
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATE (Description)	RIALS	CORE REC %	AMPLE	REMARKS				
-2.1	.0	-			+	lo Z	-21				
-2.1	.0		SAND, It.gray fine with 10-18	5%	+	\vdash	-2.1				
			shell (5Y 7/1)			#1	Sample #1, Depth = 0.2' 0.25 mm, 0.99 phi sorting 1.7 % silt				
-3.9 -4.1	SAND, white medium with 20% sh	Y 7/1)		#2	Sample #2, Depth = 1.1' 1.11 mm, 1.61 phi sorting 1.0 % silt BP98-1 COMPOSITE 0.80 mm 1.47 phi sorting 1.2% silt						

DRIL	LING	LOG	DIVISION	INSTA	LLATI	DN	SHE	ET 1 OF 1			
PROJEC	T			10. ST	ZE AND	TYPE	OF BIT	UF 1			
			SHOAL es or Station)	11. DA	TUM FO		VATION SHOWN (TBM or MSL)	_			
X=44	0,077	Y=780			VD NUFAC	TURFP	S DESIGNATION OF DRILL				
	NG AGEN	ICY		HA	HAMMER						
			n drawing title		13. TOTAL NO. OF OVERBURDEN SAMPLES TAKEN						
and file	number)		BP-98#2			7.0	undisturbed: 3 OF CORE BOXES 1				
S. NAME (OF DRILL	ER					UND WATER NA				
	TION OF	HOLE					TARTED COMPLETED				
⊠ VE	RTICAL	□ IN	CLINED				/25/98 11/25/98				
. THICK	NESS OF	BURDE	N OFt.				OF HOLE -0.5 Ft.				
B. DEPTH	DRILLED	INTO	ROCK 0 Ft.				COVERY FOR BORING 60 %				
. TOTAL	TOTAL DEPTH OF HOLE 4.0 Ft.				DALES		20200101				
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATER: (Description)	IALS	CORE REC %	SAMPLE	REMARKS				
5	.0	-+			-	0,2	- 5				
5			SAND, It.brownish gray fine to	medium	_		5				
	1		with 50% shell hash and shell t	fragment	\$						
			(10YR 6/2) at 0.9' a 0.1' 80% shell fragme	nt laver							
	4	1 5 5 5	and at 1.5' a 10-20% shell has	h layer	1						
- 1	4										
	7										
	4							00			
	4	11.			1		Sample #1, Depth = 1.1' 0.41 mm, 1. phi sorting 1.0 % silt	.09			
- 1	1					#1	prii sorting 1.0 % sitt				
- 1	7										
	7										
	1										
	4										
	1										
	1				1						
	4										
-2.2	1.7				1						
2.2	1.7		SAND, It.gray fine (5Y 7/1)	-	1						
-2.4	1.9		21 (4. 110			#2	Sample #2, Depth = 1.8' 0.17 mm, 0.56 phi sorting 2.9 % silt				
2.4	1.0	1111	SAND, It. brown fine to medium)	1		0.00 phi softing 2.8 % slit				
	4	***	with 40-50% shells (10YR 6/2								
-2.7	2.2				1						
2.1			SAND, fine to medium with 20%		1						
-2.9	2.4	***	shell fragments, decomposing	wood at		#3	Sample #3, Depth = 2.3' 0.25 mm 1.04 phi sorting 4.8 % silt	,			
2,0	-		2.2' surrounded by organic ma and 2 0.5' shells at 2.4'	itter,	1		וופ א ט.ד צווו שטונוון דיטוו				
	7	1	Eld 10 ollollo oto 27		1						
	‡										
	4										
	4										
	‡										
	-						BPOR-2 COMPOSITE				
	‡						BP98-2 COMPOSITE				
							0.37 mm				
	4						1.04 phi sorting 1.5% silt				
	=						1.0% 311.				
	-										
	1										
	3										
	3										
1	3										
	-1	\dashv									
	7										
	1										
	7										
	1										
			S EDITIONS ARE OBSOLETE.				HOLE NUMB				
NO FOR	4 40 20			ROJECT							

IRTI I ING I OG I	INSTA	LLATIO	ON	Hole No.BP-98#3	1
PRILLING LOG DIVISION	10 57	7E AND	TVPE	OF BIT	1
BLIND PASS FLOOD SHOAL	11. DA	TUM FO		VATION SHOWN (TBM or MSL)	\dashv
LOCATION (Coordinates or Station) X=440,135 Y=781,205		VD	TUDED	'S DESIGNATION OF DRILL	\dashv
DRILLING AGENCY		MMER	IONEN	S DESIGNATION OF DRILL	
CPE HOLE NO. (As shown on drawing title				VERBURDEN SAMPLES TAKEN	\neg
and file number) BP-98#3		turbed		undisturbed: 1 OF CORE BOXES 1	\dashv
NAME OF DRILLER LM, JW				OF CORE BOXES	\dashv
DIRECTION OF HOLE				TARTED COMPLETED	\dashv
☑ VERTICAL ☐ INCLINED				/25/98 11/25/98	_
THICKNESS OF BURDEN 0 Ft.				OF HOLE -1.0 Ft.	_
DEPTH DRILLED INTO ROCK 0 Ft.				COVERY FOR BORING 60 %	4
TOTAL DEPTH OF HOLE 4.0 Ft.		DALES	SSIO		
LEV. DEPTH S CLASSIFICATION OF MATERI (Description)	ALS	CORE REC %	SAMPLE	REMARKS	
-1.0 .0		1	_	-1.0	ヿ
SHELL AND SHELL FRAGMENT It. brownish gray with 20% fine sand (10YR 6/2)			#1	Sample #1, Depth = 1.1' 1.28 mm, 1.51 phi sorting 1.3 % silt	
				BP98-3 COMPOSITE 1.28 mm 1.51 phi sorting 1.3% silt	
FORM 1836 PREVIOUS EDITIONS ARE OBSOLETE. PR					F

DRIL	LING	LOC	DIVISION	I	NSTALLA	TION		SHEE	T 1 F 1
. PROJE	CT			10	D. SIZE A	ND T	YPE		, 1
			D SHOAL res or Station)	11		FOR E	ELEV	ATION SHOWN (TBM or MSL)	
X=44	40,641	Y=781,		12	NGVD	ACTU	RER'	S DESIGNATION OF DRILL	
CPE	ING AGE	NCY			HAMME	R			
. HOLE	NO. (As s	hown o	n drawing title		3. TOTAL disturt		F O	VERBURDEN SAMPLES TAKEN undisturbed: 3	
and fil	OF DRILL)	BP-98#4	1			BER (OF CORE BOXES 1	
LM, J		CH		-			_	UND WATER NA	_
	TION OF	HOLE					ST	TARTED COMPLETED	
⊠ VE	ERTICAL	□ IN	ICLINED	-				/25/98 11/25/98	
. THICK	NESS OF	BURDE	EN OFt.	-				OF HOLE -0.2 Ft.	_
. DEPTH	ORILLE	OTNI C	ROCK 0 Ft.					COVERY FOR BORING 83 %	
. TOTAL	DEPTH	OF HOL	E 4.0 Ft.		L. DAL				
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MAT (Description)	ERIALS	COI RE	SAMPLE	NUMBER	REMARKS	
2	.0					+		2	
	-		SAND, gray fine silty (2.5)	6/1)			#1		
4	.2						#1	Sample #1, Depth = 0.1' 0.17 mm, 0.97 phi sorting 14.6 % silt	
	-		SAND, It.gray fine with	ü				escential Magnis-hard-Tille Notation Till	
]		40-60% shell hash and she fragments (2.5Y 7/1)	211					
			rioginarito (Elot 1717				- 1		
	1	* * * *							
	:	111							
	-	1111							
	1							Sample #2, Depth = 1.1' 0.88 mm,	
	:	111					1	1.97 phi sorting 1.6 % silt	
	-					7	#2	5000	
	-	1111							
	_								
	1								
	-						1		
	1								
							1		
	1	* * * *							
	1	111					1		
-2.5	2.3		CAND are for the	- 111			\dashv		
	1		SAND, gray fine with some (5Y 6/1)	silt					
	-								
	-							Sample #3, Depth = 2.7' 0.15 mm,	
	-					#	#3	1.00 phi sorting 14.0 % silt	
	-						1		
	-								
	-								
2.5	2.1								
-3.5	3.3	(A)			\dashv	-	\dashv		
	3								
	-							BP98-4 COMPOSITE	
	-						1	0.46 mm	
								1.62 phi sorting	
	-							6.2% silt	
]						1		
	-						1		
	-								
	-								
	-								
	-								
		1 1				- 1	- 1		
	_						- 1		
IR FAR	4 1836 ^	REVIOUS	S EDITIONS ARE OBSOLETE.	PROJEC	T			HOLE NUMBER	_

	LING	LOG	DIVISION	INST	LLATI	N	Hole No.BP-98
PROJE	CT			10. SI	ZE AND	TYPE	OF BIT
	ID PASS		SHOAL es or Station)	11. DA	TUM FO		VATION SHOWN (TBM or MSL)
X=44	40,920	Y=780			NUFAC	TURER	S DESIGNATION OF DRILL
. DRILL CPE	ING AGE	NCY		HA	MMER		
. HOLE	NO. (As s	hown or	n drawing title		turbe		VERBURDEN SAMPLES TAKEN undisturbed: 3
	OF DRILL		BP-98#5				OF CORE BOXES 1
LM, J		.cn					UND WATER NA
. DIREC	CTION OF					E S	TARTED COMPLETED
≥ VE	ERTICAL	□ IN	CLINED	(7. 5)			/25/98 11/25/98 OF HOLE -0.2 Ft.
	KNESS OF						COVERY FOR BORING 70 %
			ROCK 0 Ft.	19. SI	SNATUR	E OFG	EOLOGIST
. TOTAL	L DEPTH		£ 4.0 Ft.	L.	DALES		
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATE (Description)	RIALS	CORE REC %	SAMPLE	REMARKS
2	.0	-			-	0,2	
-,2	.0	1981	SAND, gray fine silty (2.5Y	8/1)	1		2
	=		-, 3) viii) (6.01	cet#01#)		#1	Sample #1, Depth = 0.2' 0.16 mm, 0.96 phi sorting 27.9 % silt
5	.3 -						0.00 pili softing 21.0 % sift
	-		SAND, It.gray medium with 2	0%	1		
]		shells and shell fragments (7/1)	(5 Y			
	=						
	:	1 (() 1 7 7 7 7					
	7	* * * *					
	-	11.11					
	-	1111				#2	Sample #2, Depth = 1.0' 0.34 mm,
	3						1.04 phi sorting 0.6 % silt
] =				1		
	:						
	:						
	-						
-1.9	1.7						
	-		SAND, gray fine silty with 5	% shell	1		
]		fragments (5Y 6/1)			#3	Sample #3, Depth = 1.9' 0.15 mm,
-2.2	2.0_						1.15 phi sorting 13.9 % silt
	1	ci i i	SAND, It. gray medium with	30%	1		- PATES
	-		shell tradments 154 //11				
			shell fragments (5Y 7/1)				II
			shell tragments (5Y 7/1)				
			snell fragments (5Y //I)				
			snell fragments (5Y //I)				
			snell fragments (5Y //I)				
-3.0	2.8		snell fragments (5Y 7/1)				
-3.0	2.8	1	shell fragments (5Y 7/1)				
-3.0	2.8		sneil fragments (5Y //I)				
-3.0	2.8		shell fragments (5Y //I)				BP98-5 COMPOSITE
-3.0	2.8		shell fragments (5Y //I)				
-3.0	2.8		shell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		shell fragments (5Y //I)				0.29 mm
-3.0	2.8		snell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		snell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		snell fragments (5Y //I)				0.29 mm 1.04 phi sorting
3.0	2.8		snell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		shell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		snell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		shell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		shell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		shell fragments (5Y //I)				0.29 mm 1.04 phi sorting
-3.0	2.8		shell fragments (5Y //I)				0.29 mm 1.04 phi sorting
			EDITIONS ARE OBSOLETE.				0.29 mm 1.04 phi sorting

		LOG	DIVISION	INST			SHEET OF			
PROJE		ELOOP	CHOM				OF BIT			
			SHOAL es or Station)			R ELEV	ATION SHOWN (TBM or MSL)			
X=44	40,117 Y	=781,4			NUFAC	TURER'	S DESIGNATION OF DRILL			
CPE	ING AGE	NCY			HAMMER 13. TOTAL NO. OF OVERBURDEN SAMPLES TAKEN					
HOLE			drawing title		turbed	S 70 TO	undisturbed: 2			
	of DRILL		BP-98#6				OF CORE BOXES 1			
LM, J		.En		15. EL	EVATIO	N GROU	UND WATER NA			
	TION OF			18. DA	TE HOL		7ARTED COMPLETED /25/98 11/25/98			
	ERTICAL			17 FI	FVATIO		OF HOLE -1.0 Ft.			
	THICKNESS OF BURDEN 0 Ft.					COVERY FOR BORING 85 %				
DEPTH DRILLED INTO ROCK 0 Ft. TOTAL DEPTH OF HOLE 4.0 Ft.							EOLOGIST			
					DALES					
LEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)	ALS	CORE REC %	SAMPL	REMARKS			
-1.0	.0						-1.0			
	:		SHELL AND SHELL FRAGMENTS It. brownish gray with 15% fine	6,						
	:		sand (2.5Y 6.5/2)							
	-									
		111								
-1.6	.6									
1.0	.0		SAND, olive gray fine silty		1					
-1.8	.8		(5Y 5/2)							
		1111	SHELL AND SHELL FRAGMENTS	5,	1					
	-	tia:	It. gray with 30% medium sand (5Y 7/2)				-			
			0.1' fine silty sand layer at 1.4'				Sample #1, Depth = 1.1' 1.33 mm, 1.65			
		Y 5 4 3					phi sorting 1.5 % silt			
	=	* * * *								
	-	111								
	-					#1				
						771				
	_									
	-									
	:									
-3.3	2.3	***	CAME 17 (0.5V.57)		-	\vdash				
			SAND, white medium (2.5Y 8/1)							
-3.5	2.5	m	SAND, gray fine with some silt	(5Y R/	1	\vdash				
			S. W. O. G. C. J. HILL MICH SOME SHE	(01 0/	1					
	-						Sample #2, Depth = 2.7' 0.16 mm, 0.92 phi sorting 14.5 % silt			
	:						The prince of this party			
]					#2				
	-									
	:									
	-									
-4.4	3.4				+					
	-						BP98-6 COMPOSITE			
	:	1								
] -	1					0.70 mm			
] [1.43 phi sorting 5.4% silt			
]									
		1								
		1								
	-	‡				1				
	-	1								
10 F0-	W 4000		S EDITIONS ARE OBSOLETE.	DJECT			1			
		REVIOUS	EDITIONS ARE UBSULETE. PR	UJECI			SHOAL BP-98#6			

11. DAT NG' 12. MAN HAI 13. TO' dist 14. TO' 15. ELE 18. DAT 17. ELE 18. TO' 19. SIG L. E	TAL NOTAL NO	TURER'S O. OF OVI DISTRIBUTION ON GROUN E ST ON TOP	OF BIT VATION SHOWN (TBM or MSL) S DESIGNATION OF DRILL VERBURDEN SAMPLES TAKEN undisturbed: 2 OF CORE BOXES 1 UND WATER NA TARTED COMPLETED
11. DAT NG' 12. MAN HAI 13. TO' dist 14. TO' 15. ELE 18. DAT 17. ELE 18. TO' 19. SIG L. E	TAL NO TE HOLE TAL CO TAL CO TAL CO TAL CO TAL CO	TURER'S O. OF OVI DISTRIBUTION ON GROUN E ST ON TOP	VATION SHOWN (TBM or MSL) S DESIGNATION OF DRILL VERBURDEN SAMPLES TAKEN Undisturbed: 2 OF CORE BOXES UND MATER NA TARTED COMPLETED
12. MAN HAI 13. TO' dist 14. TO' 15. ELE 16. DA' 17. ELE 18. TO' 19. SIG L. C	MMER TAL NO turbed TAL NU EVATIO EVATIO TAL CO	D. OF OVER 11/ON TOP	VERBURDEN SAMPLES TAKEN undisturbed: 2 OF CORE BOXES 1 UND WATER NA TARTED COMPLETED
HAN 13. TO dist 14. TO 15. ELE 16. DA 17. ELE 18. TO 19. SIG L. C	MMER TAL NO turbed TAL NU EVATIO EVATIO TAL CO	D. OF OVER 11/ON TOP	VERBURDEN SAMPLES TAKEN undisturbed: 2 OF CORE BOXES 1 UND WATER NA TARTED COMPLETED
14. TO 15. ELE 16. DA 17. ELE 18. TO 19. SIG	TAL NU EVATION EVATION TAL CO	DI GROUE E ST 11/ ON TOP	undisturbed: 2 OF CORE BOXES UND WATER NA TARTED COMPLETED
14. TO 15. ELE 16. DA 17. ELE 18. TO 19. SIG L. C	TAL NU	MBER ON GROUE ST 11/ ON TOP	OF CORE BOXES UND WATER NA TARTED COMPLETED
15. ELE 16. DA 17. ELE 18. TO 19. SIG	EVATION TAL CONATURE	E ST 11/ ON TOP	UND WATER NA TARTED COMPLETED
16. DAT	VATIONATUR	E \$1 11/ ON TOP	TARTED COMPLETED
18. TOT 19. SIG L. [TAL CO	N TOP	/a= /a=/a= :
18. TOT 19. SIG L. [TAL CO		/25/98 11/25/98
19. SIG	NATUR		OF HOLE -1.7 Ft.
L. [COVERY FOR BORING 65 %
LS			20200131
	CORE REC %	SAMPLE	REMARKS
		0,2	17
		\vdash	-1.7
		yan 0	
		#1	Sample #1, Depth = 0.4' 0.32 mm, 1.45 phi sorting 4.7 % silt
			1. TO PIN SOLUTING 4.1 A SILL
e 4'			
4'			
		#2	
			Sample #2, Depth = 1.8' 0.62 mm, 1.56 phi sorting 1.3 % silt
			pin sorting a sint
			BP98-7 COMPOSITE
			1000 1000
			0.51 mm 1.53 phi sorting
			2.4% silt
			,
			#2

	G LOG	DIVISION	INSTA	LLATI	ON	Hole No.BP	SHEET 1
PROJECT			10 87	7F AND	TYPE	OF BIT	0F 1
BLIND PAS						VATION SHOWN (TBM or MSL)	
X=440,43				VD	TIBER	'S DESIGNATION OF DRILL	
DRILLING AC				MMER	IURER	S DESIGNATION OF DRILL	
CPE . HOLE NO. (A	s shown on	drawing title	13. TO	TAL NO		VERBURDEN SAMPLES TAKEN	
and file numb	ber)	BP-98#8		turbe		undisturbed: 1	
LM, JW	ILLER					OF CORE BOXES 1	
DIRECTION	OF HOLE					TARTED COMPLETED	
⊠ VERTICA		LINED				/25/98 11/25/98	
THICKNESS	OF BURDEN	0 Ft.	17. EL	EVATIO	ON TOP	of HoLE −1.0 Ft.	
DEPTH DRILL						COVERY FOR BORING 88 %	
TOTAL DEPT	TH OF HOLE	4.0 Ft.		DALES		EOLOGIST	
LEV. DEPT	гн <u>Э</u>	CLASSIFICATION OF MATER	RIAIS	CORE	щĸ		
	LEGEND	(Description)	ILALO	CORE REC %	포포	REMARKS	
	=			*	SA		
-1.0 .0						-1.0	
-3.7 2.7	TARTER TO THE TRANSPORT THE TRANSPORT TO THE TRANSPORT THE	SHELL HASH AND SHELL FRAIL. gray with 10-15% fine sand (5Y 7/1) and a 0.1' layer of fine sand with some silt at 0.	l		樹	Sample #1, Depth = 0.4' 0.6 1.40 phi sorting 1.5 % silt BP98-8 COMPOSITE 0.93 mm 1.40 phi sorting	93 mm,
	111111111111111111111111111111111111111					1.5% silt	
8 FORM 1934	PREVIOUS	EDITIONS ARE OBSOLETE. P	PROJECT			1,100	E NUMBER

		LOG	DIVISION	INSTA	ALLATIO	N		SHEET 1 OF 1		
. PROJE	CT D PASS F	1.000	CHOVI				OF BIT			
			s or Station)		TUM FO	R ELEV	VATION SHOWN (TBM or MSL)			
X=44	10,755 Y	=781,8		12. MA	NUFAC	TURER	'S DESIGNATION OF DRILL			
CPE					HAMMER 13. TOTAL NO. OF OVERBURDEN SAMPLES TAKEN					
4. HOLE	NO. (As she number)	own on	drawing title BP-98#9		turbe		undisturbed: 3	•		
5. NAME	OF DRILLE	R	DF-80#8				OF CORE BOXES 1			
LM, J							UND WATER NA			
	TION OF H		TITNED	16. DA	IE HUL		7ARTED COMPLETED /25/98 11/25/98			
	NESS OF I			17. EL	EVATIO		OF HOLE -0.8 Ft.			
			ROCK 0 Ft.				COVERY FOR BORING 73 %			
			4.0 Ft.		BNATUF DALES		EOLOGIST			
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATER: (Description)		CORE REC %		REMARKS			
8	.0	-			\vdash	0,2	8			
.0	-1		SAND, gray fine silty with 10%		\vdash		0			
10			shell (2.5Y 6/I)			#1	Sample #1, Depth = 0. 0.74 phi sorting 32.6 %			
-1.6 -2.4	.8 -		SAND, gray fine silty, shell content increasing with depth 40% (2.5Y 8/I)	to		#2	Sample #2, Depth = 1.50 phi sorting 16.9 %			
-3.7	**************************************		SHELL HASH AND SHELL FRAGMENTS, It. gray with 20: fine sand with some silt (2.5Y 7/1)			#3	Sample #3, Depth = 2. 1.45 phi sorting 2.9 % :			
							BP98-9 COMPOSITE 0.29 mm 1.27 phi sorting 14.9% silt			
NG FORI	M 1836 PR	EVIOUS	EDITIONS ARE OBSOLETE.	ROJECT BLIND PA	SS FL	.00D	SHOAL	HOLE NUMBER BP-98#9		

DRILL	TNG LO	G DIVISION	II.	INSTAL	LATI	N	Hole No.BP-98#10	
. PROJEC		<u> </u>				7045-	OF 1	
BLIND	PASS FLO						OF BIT VATION SHOWN (TBM or MSL)	4
		etes or Station)		NGV			ATTOR SHORR (TEM OF MSE)	١
	0,809 Y=78	32,380				TURER	'S DESIGNATION OF DRILL	1
CPE			1		MER AL NO	OFO	VERBURDEN SAMPLES TAKEN	4
4. HOLE N	O. (As shown	on drawing title			urbed		undisturbed: 2	
	F DRILLER	BP-98#10	1.	4. TOT	AL NU	MBER	OF CORE BOXES 1	1
LM, JW			10	5. ELE	VATIO	N GRO	UND WATER NA	1
3. DIRECT	TION OF HOLE		16	6. DAT	E HOL		TARTED COMPLETED	1
∨EF	RTICAL [INCLINED	-				/25/98 11/25/98	4
. THICKN	ESS OF BURI	DEN OFt.	-			1/45 P. 750	OF HOLE -0.8 Ft.	4
. DEPTH	DRILLED INT	O ROCK O Ft.					COVERY FOR BORING 70 %	4
. TOTAL	DEPTH OF HO	LE 4.0 Ft.	"		ALES		20200101	ı
ELEV.	DEPTH OF	CLASSIFICATION OF MAT (Description)	TERIALS	5 (CORE REC %	SAMPLE	REMARKS	1
8	.0			-			8	H
		SAND, It. gray mixture of sand and fine to medium si with increasing shell conte depth (5Y 7/1)	and			#1	Sample #1, Depth = 0.5' 0.16 mm, 0.87 phi sorting 22.3 % silt	
-3.6	2.8					#2	Sample #2, Depth = 1.8' 0.20 mm, 1.18 phi sorting 14.2 % silt	
							BP98-10 COMPOSITE 0.18 mm 1.03 phi sorting 18.2% silt	
NG FORM	1836 PREVIO	US EDITIONS ARE OBSOLETE.	PROJEC	CT D PAS	S FI	00D	SHOAL BP-98#10	_

APPENDIX B GRADATION ANALYSIS REPORTS

GRADATION ANALYSIS REPORT BLIND PASS INTERIM DREDGING TESTED BY: ID ON: 1/99

SAMPLE NO.: BP98-1#1

SAMPLE ELEV. (FT. NGVD): -2.3

SAMPLE DEPTH (FT.): 0.2 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 81.87

SAMPLE WEIGHT AFTER WASH (GRAMS): 80.50

SAMPLE	WEIGHI	AFIER V	NASH	(GRAM	5):	80.5	0		
SIEVE SIZE		MESH SI (mm)				RETAI			SED %)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN		2.8 2.0 1.4 1.0 0.5 0.5 0.5 0.6	000 000 300 000 400 000 710 500 355 250 180 125	0 0 1 2 4 7 13 19 28 49 77 80 80 81	.00 .12 .45 .00 .20 .26 .50 .66 .29 .70 .23 .88 .44 .49	0. 1. 2. 5. 9. 16. 23. 35. 60.	00 15 55 22 69 20 16 68 .56 .06 .13 .25 .31	10 9 9 9 9 9 8 7 6 3	0.00 0.00 9.85 9.45 8.78 7.31 4.80 0.84 3.32 6.44 4.94 9.87 4.87 1.75 1.69 0.84 0.00
PHI(5): PHI(50) PHI(95)	: 2.30]	PHI(1	L6): 0 75): 2	.95 .71	I I	PHI (25 PHI (84	5):	1.56
	SS:	: 0.00				SILT/ KURT	CLAY	: 1	69% 083
GRAPHIO MEAN (I MEAN (r	C METHO PHI): 1 mm) : 0	.81	LATEI	O USIN	M G 5	EDIAN	RTING (mm) METH	:	0.94
MOMENT MEAN (I	PHI): 2	.00				SOI	RTING	:	0.99
DATA F	ILE NAM	E: BP98	1#1.	TAB					

GRADATION ANALYSIS REPORT
BLIND PASS INTERIM DREDGING
TESTED BY: ID ON: 1/99

SAMPLE NO.: BP98-1#2

SAMPLE ELEV. (FT. NGVD): -3.2

SAMPLE DEPTH (FT.): 1.1 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 83.95

SAMPLE WEIGHT AFTER WASH (GRAMS): 83.13

SHILLIE	MEIGHT	ALIBK MADII	(dicarib).	03.13	
SIEVE SIZE		MESH SIZE (mm)	RETAINED (GRAMS)	RETAINED (%)	PASSED (%)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN			3.99 13.77 19.03 25.23 32.59 39.45 48.16 60.18 71.46 78.92 82.14 82.88 83.07 83.12	4.75 16.40 22.67 30.05 38.82 46.99 57.37 71.69 85.12 94.01 97.84 98.73 98.95 99.01 99.51	95.25 83.60 77.33 69.95 61.18 53.01 42.63 28.31 14.88 5.99 2.16 1.27 1.05
PHI (50)	: -2.98): 0.14): 2.13		16):-2.03 75): 1.12		5):-1.34 4): 1.46
	SS:	: 0.00 -0.326		SILT/CLAY KURTOSIS	
MEAN (I	C METHO PHI):-0 mm): 1 MEAN WA	.26		MEDIAN (mm)	
MEAN (METHOD PHI):-0 mm): 1	.15		SORTING	: 1.61
בי עתא בי	TTE NINM	F. DD001#3	ת אידי		

DATA FILE NAME: BP981#2.TAB

GRADATION ANALYSIS REPORT BLIND PASS INTERIM DREDGING TESTED BY: ID ON: 1/99

SAMPLE NO.: BP98-2#1

SAMPLE ELEV. (FT. NGVD): -1.6

SAMPLE DEPTH (FT.): 1.1 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 117.34

SAMPLE WEIGHT AFTER WASH (GRAMS): 116.16

SAMPLE WEIGH	r After Wash	(GRAMS):	116.16	
SIEVE PHI SIZE SIZE	MESH SIZE (mm)	RETAINED (GRAMS)	RETAINED (%)	PASSED (%)
5/8 -4.06 5/16 -3.06 5 -2.06 7 -1.56 10 -1.06 14 -0.56 18 0.06 25 0.5 35 1.06 45 1.5 60 2.0 80 2.5 120 3.0 170 3.5 200 3.75 230 4.0 PAN	8.000 4.000 2.800 2.000 1.400 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075	0.00 0.00 2.38 3.46 4.66 7.20 11.90 20.97 40.95 59.95 86.44 107.02 115.21 116.07 116.14 117.33	0.00 0.00 2.03 2.95 3.97 6.14 10.14 17.87 34.90 51.09 73.67 91.21 98.18 98.92 98.98 99.49 99.99	100.00 100.00 97.97 97.05 96.03 93.86 89.86 82.13 65.10 48.91 26.33 8.79 1.82 1.08 1.02 0.51 0.01
PHI(5): -0.7 PHI(50): 1.4 PHI(95): 2.7	7 PHI(16): 0.38 75): 2.04	PHI(25 PHI(84	5): 0.71 1): 2.29
SIEVE LOSS(g SKEWNESS:			SILT/CLAY KURTOSIS	
GRAPHIC METH MEAN (PHI): MEAN (mm): NOTE: MEAN W	1.23 0.43		SORTING EDIAN (mm) POINT METHO	0.36
MOMENT METHO MEAN (PHI): MEAN (mm):	1.28		SORTING	: 1.09
DAMA BILB MA	ME DD000#1	шил		

DATA FILE NAME: BP982#1.TAB

GRADATION ANALYSIS REPORT
BLIND PASS INTERIM DREDGING
TESTED BY: ID ON: 1/99

SAMPLE NO.: BP98-2#2

SAMPLE ELEV. (FT. NGVD): -2.3

SAMPLE DEPTH (FT.): 1.8 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 106.04

SAMPLE WEIGHT AFTER WASH (GRAMS): 103.33

01111111			(014110).	200.00	
SIEVE SIZE	PHI SIZE	MESH SIZE (mm)	RETAINED (GRAMS)		PASSED (%)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	0.00 0.00 0.00 0.00 0.00 0.04 0.07 0.27 1.08 3.72 13.64 47.55 86.73 100.19 102.99 104.63 106.04	81.79 94.48 97.12 98.67	100.00 100.00 100.00 100.00 99.96 99.93 99.75 98.98 96.49 87.14 55.16 18.21 5.52 2.88 1.33 0.00
PHI(5): PHI(50) PHI(95)	: 2.57		16): 2.05 (75): 2.91	PHI(25	5): 2.19
SIEVE L				SILT/CLAY KURTOSIS	
MEAN (m	HI): 2 m): 0	.57 .17		SORTING MEDIAN (mm) POINT METHO	: 0.17
MOMENT MEAN (P MEAN (m	HI): 2			SORTING	: 0.56
האתא בד	TE NAM	F. BD002#2	מאד		

DATA FILE NAME: BP982#2.TAB

GRADATION ANALYSIS REPORT BLIND PASS INTERIM DREDGING ON: 1/99 TESTED BY: ID

SAMPLE NO.: BP98-2#3

SAMPLE ELEV. (FT. NGVD): -2.8

SAMPLE DEPTH (FT.): 2.3 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 63.55

SAMPLE	WEIGHT	AFTER	WASH	(GRAI	MS):	60.6	60		
SIEVE SIZE	PHI SIZE	MESH S					INED		SSED
5/8	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.50 3.00 3.50	4. 2. 2. 1. 0. 0. 0. 0. 0.	.000 .000 .800 .000 .400 .000 .710 .500 .355 .250 .180 .125	1 1 2 4 5 6 6	0.00 0.28 0.73 1.12 1.89 3.06 5.32 0.12 5.37 5.26 0.78 6.45 0.51 2.04	0 1 2 4 8 15 24 39 64 89 95	.00 .44 .15 .76 .97 .82 .37 .92 .19 .75 .17 .83 .73	10	00.00 00.00 09.56 98.85 98.24 97.03 95.18 91.63 84.08 75.81 50.25 85.83 L1.17 4.78 2.38 0.03
PHI (50 PHI (95	: 0.03): 2.21): 3.64			75):	2.72		PHI(8		
SIEVE	LOSS (g) SS:	-0.398	2 3			SILT	/CLAY		1.78% L.241
MEAN (C METHO PHI): 1 mm): 0 MEAN WA	.96 .26	ULATEI			MEDIAN		:	0.95
MEAN (METHOD PHI): 1 mm): 0	.97				SO	RTING	:	1.04
ה אידיא ב	TTE NAM	E. DDO	02#2	ם גיד					

DATA FILE NAME: BP982#3.TAB

GRADATION ANALYSIS REPORT BLIND PASS INTERIM DREDGING TESTED BY: ID ON: 1/99

SAMPLE NO.: BP98-3#1

SAMPLE ELEV. (FT. NGVD): -2.1

SAMPLE DEPTH (FT.): 1.1 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 63.78

SAMPLE WEIGHT AFTER WASH (GRAMS): 62.95

SAMPLE	WEIGHT	AFTER WA	SH (GRAMS):	62.95	
SIEVE SIZE	PHI SIZE	MESH SIZ (mm)	E RETAIN (GRAN		ETAINED (%)	PASSED (%)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	16.00 8.00 4.00 2.80 2.00 1.40 1.00 0.71 0.50 0.35 0.25 0.18 0.12 0.09 0.07	0 3.0 0 9.0 0 14.0 0 20.0 0 28.0 0 35.0 0 43.0 0 51.5 5 57.0 0 62.5 0 62.5 0 62.5 3 63.3	.10 .51 .71 .66 .93 .21 .37 .24 .83 .90	0.00 5.10 15.37 22.37 31.51 44.70 55.99 68.45 81.42 89.70 94.65 97.59 98.51 98.62 98.70 99.35	100.00 94.90 84.63 77.63 68.49 55.30 44.01 31.55 18.58 10.30 5.35 2.41 1.49 1.38 1.30 0.65 0.00
PHI (50)	: -3.02):-0.27): 2.06		I(16):-1 I(75): 0			25):-1.36 34): 1.16
		: 0.00			ILT/CLAY	7: 1.30% S: 0.987
MEAN (1	C METHO PHI):-0 mm): 1 MEAN WA	.40	TED USING		SORTING	: 1.20
MEAN (METHOD PHI):-0 mm):1				SORTING	G: 1.51
DATA F	ILE NAM	E: BP983#	1 TAB			

DATA FILE NAME: BP983#1.TAB

GRADATION ANALYSIS REPORT BLIND PASS INTERIM DREDGING TESTED BY: ID ON: 1/99

SAMPLE NO.: BP98-4#1

SAMPLE ELEV. (FT. NGVD): -0.3

SAMPLE DEPTH (FT.): 0.1 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (CRAMS). 46 07

		GHT (GRAMS AFTER WASH		40.08	
SIEVE SIZE	PHI SIZE	MESH SIZE (mm)	RETAINED (GRAMS)	RETAINED	PASSED (%)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063		61.65 81.35	100.00 100.00 100.00 99.80 99.57 99.13 98.09 96.18 91.80 86.98 78.06 65.51 38.35 18.65 14.61 7.11 0.04
PHI(5): PHI(50) PHI(95)	: 2.79	PHI(16): 1.67 75): 3.34	PHI (25 PHI (84	
SIEVE L	SS:	: 0.02 -0.434		SILT/CLAY	
GRAPHIC MEAN (P MEAN (m	METHOIPHI): 2	.56 .17		SORTING EDIAN (mm) POINT METHO	
MOMENT MEAN (F	PHI): 2			SORTING	: 0.97
בים עיייע ביד	T TO NINM	F. DD004#1	ma D		

DATA FILE NAME: BP984#1.TAB

GRADATION ANALYSIS REPORT BLIND PASS INTERIM DREDGING TESTED BY: ID ON: 1/99

SAMPLE NO.: BP98-4#2

SAMPLE ELEV. (FT. NGVD): -1.3

SAMPLE DEPTH (FT.): 1.1 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

		IGHT (GRAMS AFTER WASH			
SIEVE SIZE		MESH SIZE (mm)			PASSED (%)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN		16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	7.55 18.10 22.35 26.93 31.41 35.60 40.94 48.85 59.44 74.24 85.06 88.24	19.83 24.48 29.50 34.41 39.00 44.85 53.51 65.11 81.32 93.18 96.66 98.14 98.41	91.73 80.17 75.52 70.50 65.59 61.00 55.15 46.49 34.89 18.68 6.82 3.34
PHI (50		PHI(PHI(2: PHI(8:	
	SS:	: 0.00 -0.501		SILT/CLAY KURTOSIS	
GRAPHI MEAN (MEAN (C METHO PHI):-0 mm) : 1	.01		SORTING MEDIAN (mm) POINT METH	
MEAN (METHOD PHI): 0 mm): 0	.19		SORTING	: 1.97
DATA F	TIE NAM	E. BP984#2	TAB		

DATA FILE NAME: BP984#2.TAB

SAMPLE NO.: BP98-4#3

SAMPLE ELEV. (FT. NGVD): -2.9

SAMPLE DEPTH (FT.): 2.7 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (GRAMS): 83.26

SAMPLE	WEIGHT	AFTER	WASH	(GRAM	S):	72.4	42		
SIEVE SIZE	PHI SIZE	MESH (mm)		RETAI (GRA					SED %)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	4 2 2 1 0 0 0 0 0 0	.000 .000 .000 .800 .000 .400 .000 .710 .500 .355 .250 .180 .125 .090 .075	0 0 0 1 2 3 4 5 6 8 15 39 66 71	.00 .00 .53 .16 .19 .12 .07 .12 .24 .46 .38 .24 .20	0 0 1 2 3 4 6 7 10 18 47 79 85 93	.35	10 9 9 9 9 9 9 9 9 8 8 5 2 1	0.00 0.00 0.00 9.36 8.61 7.37 6.25 5.11 3.85 2.51 9.84 1.53 2.87 0.49 4.04 6.65 0.00
PHI (50 PHI (95	: 0.54): 3.04): 4.06								
SIEVE :	LOSS(g) SS:						/CLAY:		
MEAN (C METHOD PHI): 2 mm): 0 MEAN WA	.73 .15	ULATE	D USIN		MEDIAN		:	0.66
MEAN (METHOD PHI): 2 mm): 0					SO	RTING	:	1.00
ב אתא ב	TTE NIAM	E. DDO	0142	TAD					

DATA FILE NAME: BP984#3.TAB

SAMPLE NO.: BP98-5#1

SAMPLE ELEV. (FT. NGVD): -0.4

SAMPLE DEPTH (FT.): 0.2 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (GRAMS): 69.68

SAMPLE WEIGHT AFTER WASH (GRAMS): 50.83

SAMPLE	WEIGHT	AFIER	WASH	(GRAM	5):	50.8	5.5		
SIEVE SIZE	PHI SIZE	MESH S		RETAI (GRA			INED		SED %)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	8. 4. 2. 1. 0. 0. 0. 0. 0.	000 000 000 800 000 400 000 710 500 355 250 180 125 090 075	0 0 0 0 1 2 2 4 7 18 42 48 50 60	.00 .00 .36 .50 .97 .25 .27 .95 .73 .91 .96 .24	0 0 0 1 1 3 4 6 11 26 61 70 72 86	.00 .00 .52 .72 .99 .39 .26 .23 .62 .09 .61 .58	10 9 9 9 9 9 9 9 9 8 7 3	0.00 0.00 9.48 9.28 9.01 8.61 8.21 6.74 5.77 3.38 8.91 73.39 8.42 9.74 7.90 3.64 0.03
PHI (50)	: 1.16): 2.83): 4.15			16): 2 75): 3			PHI (25 PHI (84		
SIEVE I	LOSS(g) SS:						/CLAY		7.90%
MEAN (I	C METHO PHI): 2 mm): 0 MEAN WA	.85 .14	JLATEI	D USIN		MEDIAN	1,8000000000000000000000000000000000000	:	0.90
MEAN (METHOD PHI): 2 mm): 0					SO	RTING	:	0.96

DATA FILE NAME: BP985#1.TAB

SAMPLE NO.: BP98-5#2

SAMPLE ELEV. (FT. NGVD): -1.2

SAMPLE DEPTH (FT.): 1.0 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 86.28

SAMPLE WEIGHT AFTER WASH (GRAMS): 85.80

SAMPLE	WEIGHT.	AFTER	WASH	(GRAM	S):	85.8	30		
SIEVE SIZE	PHI SIZE	MESH S (mm)		RETAI		RETAI			SSED
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.50 3.00 3.50 3.75 4.00	8. 4. 2. 1. 0. 0. 0. 0. 0.	000 000 000 800 000 400 000 710 500 355 250 180 125 090 075 063	0 1 2 3 5 7 10 17 27 51 79 85 85 85 86	.00 .00 .27 .27 .21 .14 .16 .73 .15 .85 .00 .33 .72 .79	0. 1. 2. 3. 5. 8. 12. 19. 32. 59. 98. 99.	30 44 88 28 11 94 78 35 43	10 9 9 9 9 8 8 8 4	00.00 00
PHI (50)	: -0.71): 1.83): 2.72			16): 0 75): 2		E	PHI (25 PHI (84		
	LOSS(g) SS:						CLAY).57% L.361
GRAPHIC MEAN (I MEAN (I	C METHOD PHI): 1 mm): 0 MEAN WA	.39 .38	JLATEI	O USIN		MEDIAN		:	0.82
MEAN (METHOD PHI): 1 mm): 0					SOF	RTING	:	1.04
DAMA II	TT T 373 84	B BB00	-110	T. D.					

DATA FILE NAME: BP985#2.TAB

SAMPLE NO.: BP98-5#3

SAMPLE ELEV. (FT. NGVD): -2.1

SAMPLE DEPTH (FT.): 1.9 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (GRAMS): 82.24

SAMPLE WEIGHT	AFTER WASH	(GRAMS):	72.75	
SIEVE PHI SIZE SIZE	MESH SIZE (mm)	RETAINED (GRAMS)	RETAINED (%)	PASSED (%)
5/8 -4.00 5/16 -3.00 5 -2.00 7 -1.50 10 -1.00 14 -0.50 18 0.00 25 0.50 35 1.00 45 1.50 60 2.00 80 2.50 120 3.00 170 3.50 200 3.75 230 4.00 PAN	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	0.00 0.00 0.62 1.56 2.47 3.46 4.19 4.92 5.83 6.77 8.58 13.74 36.25 64.40 70.82 76.74 82.22	0.00 0.00 0.75 1.90 3.00 4.21 5.09 5.98 7.09 8.23 10.43 16.71 44.08 78.31 86.11 93.31	100.00 100.00 99.25 98.10 97.00 95.79 94.91 94.02 92.91 91.77 89.57 83.29 55.92 21.69 13.89 6.69 0.02
PHI(5): -0.05 PHI(50): 3.09 PHI(95): 4.06		16): 2.44 75): 3.45	PHI(2:	5): 2.65
SIEVE LOSS(g) SKEWNESS:			SILT/CLAY KURTOSIS	
GRAPHIC METHOMEAN (PHI): 2 MEAN (mm): 0 NOTE: MEAN WA	.64 .16		EDIAN (mm)	
MOMENT METHOD MEAN (PHI): 2 MEAN (mm): 0	.75		SORTING	: 1.15
DATA ETTE NAM	E. BD985#3	TAR		

DATA FILE NAME: BP985#3.TAB

SAMPLE NO.: BP98-6#1

SAMPLE ELEV. (FT. NGVD): -2.1

SAMPLE DEPTH (FT.): 1.1 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 102.82

SAMPLE WEIGHT AFTER WASH (GRAMS): 101.32

SIEVE SIZE	PHI SIZE	MESH SIZE (mm)		RETAINED (%)	PASSED (%)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	0.00 0.00 21.05 32.11 43.30 55.02 62.86 70.21 77.56 84.58 92.72 98.70 100.51 101.15 101.30 102.06 102.82	90.18 95.99 97.75 98.38 98.52 99.26	100.00 100.00 79.53 68.77 57.89 46.49 38.86 31.72 24.57 17.74 9.82 4.01 2.25 1.62 1.48 0.74 0.00
PHI(5): PHI(50) PHI(95)	:-0.65		(16):-2.22 (75): 0.97	PHI(2 PHI(8	5):-1.79 4): 1.61
SIEVE L				SILT/CLAY KURTOSIS	
MEAN (m	HI):-0 m):1	.32 .25		SORTING MEDIAN (mm) POINT METH	: 1.57
MOMENT MEAN (P	HI):-0			SORTING	: 1.65
DATA FI	T.E. NAM	E. BP986#1	TAR		

DATA FILE NAME: BP986#1.TAB

SAMPLE NO.: BP98-6#2

SAMPLE ELEV. (FT. NGVD): -3.7

SAMPLE DEPTH (FT.): 2.7 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (GRAMS): 100.88

SAMPLE WEIGHT AFTER WASH (GRAMS): 86.53

DILLI III		711 1 1 1 1 1 1 1 1 1 1 1 1 1	(014110).	00.55			
SIEVE SIZE		MESH SIZE (mm)	RETAINED (GRAMS)		PASSED (%)		
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.50 2.00 2.50 3.00 3.50 3.75 4.00			0.00 1.02 1.24 1.53 1.84 2.22 2.67 3.55 4.78 11.12 27.86 64.80 83.98 85.44 92.79	100.00 98.98 98.76 98.47 98.16 97.78 97.33 96.45 95.22 88.88 72.14 35.20 16.02		
PHI(5): PHI(50) PHI(95)	: 2.80	PHI(16): 2.15 75): 3.27	PHI(2 PHI(8	5): 2.41		
SIEVE L		: 0.01		SILT/CLAY KURTOSIS			
GRAPHIC METHOD MEAN (PHI): 2.81 SORTING: 0.68 MEAN (mm): 0.14 MEDIAN (mm): 0.14 NOTE: MEAN WAS CALCULATED USING 5 POINT METHOD							
MOMENT MEAN (P MEAN (m	HI): 2	.64		SORTING	: 0.92		
דים עיייער	א א דא יבו	E. DD006#2	מ גידי				

DATA FILE NAME: BP986#2.TAB

SAMPLE NO.: BP98-7#1

SAMPLE ELEV. (FT. NGVD): -2.1

SAMPLE DEPTH (FT.): 0.4 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 88.36

SAMPLE WEIGHT AFTER WASH (GRAMS): 84.58

SAMPLE	MEIGHI	AFIER WASH	(GRAND):	04.50			
SIEVE SIZE	PHI SIZE	MESH SIZE (mm)	RETAINED (GRAMS)	RETAINED (%)	PASSED (%)		
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.50 2.00 2.50 3.00 3.50 3.75 4.00	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	0.00 0.00 0.89 1.68 3.62 7.51 12.19 19.21 29.35 39.09 46.49 54.00 66.55 80.29 84.21 86.38 88.34	0.00 0.00 1.01 1.90 4.10 8.50 13.80 21.74 33.22 44.24 52.61 61.11 75.32 90.87 95.30 97.76 99.98			
PHI (50) PHI (95)		PHI(5): 0.64		
	LOSS(g)	: 0.02 -0.271		SILT/CLAY KURTOSIS			
GRAPHIC METHOD MEAN (PHI): 1.62 SORTING: 1.57 MEAN (mm): 0.33 MEDIAN (mm): 0.28 NOTE: MEAN WAS CALCULATED USING 5 POINT METHOD							
MEAN (METHOD PHI): 1 mm) : 0	.66		SORTING	: 1.45		

DATA FILE NAME: BP987#1.TAB

SAMPLE NO.: BP98-7#2

SAMPLE ELEV. (FT. NGVD): -3.5

SAMPLE DEPTH (FT.): 1.8 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 96.87

SAMPLE WEIGHT AFTER WASH (GRAMS): 95.60

DIMITED WEIGH	ii iii ibic mioii	(GIGILID).	55.00	
SIEVE PHI SIZE SIZE	MESH SIZE (mm)	RETAINED (GRAMS)		PASSED (%)
5/8 -4.0 5/16 -3.0 7 -1.5 10 -1.0 14 -0.5 18 0.0 25 0.5 35 1.0 45 1.5 60 2.0 80 2.5 120 3.0 170 3.5 200 3.75 230 4.0 PAN	8.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075	95.21 95.59	99.34	100.00 93.29 90.37 85.41 78.09 68.74 57.01 41.90 32.82 22.71 15.72 6.16 1.71
PHI(5): -2.2 PHI(50): 0.3 PHI(95): 3.1	73 PHI(16):-0.90 75): 1.89		5):-0.334): 2.48
SIEVE LOSS (S	g): 0.00 -0.174		SILT/CLAY KURTOSIS	
GRAPHIC METE MEAN (PHI): MEAN (mm): NOTE: MEAN W	0.64		SORTING EDIAN (mm) POINT METH	: 0.60
MOMENT METHOMEAN (PHI): MEAN (mm):	0.68		SORTING	: 1.56
בא בדר אוי	ME. DD007#3	TT D		

DATA FILE NAME: BP987#2.TAB

SAMPLE NO.: BP98-8#1

SAMPLE ELEV. (FT. NGVD): -2.3

SAMPLE DEPTH (FT.): 1.3 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 99.13

	DRY SAMPLE WEIGHT (GRAMS): 99.13 SAMPLE WEIGHT AFTER WASH (GRAMS): 97.69								
SIEVE SIZE	PHI SIZE	MESH SIZE (mm)	RETAINED (GRAMS)	RETAINED (%)	PASSED (%)				
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.50 2.00 2.50 3.00 3.50 3.75 4.00	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	98.41	14.90 21.20 29.59 39.24 53.75 73.91 87.53 93.78 96.64 98.18	98.58 89.89 85.10 78.80 70.41 60.76 46.25 26.09 12.47 6.22 3.36 1.82 1.47 1.46 0.73				
PHI(5): PHI(50) PHI(95)	: 0.37 : 2.21	PHI(16):-1.41 75): 1.04		5):-0.77 4): 1.37				
SIEVE L SKEWNES	OSS(g)			SILT/CLAY KURTOSIS					
GRAPHIC MEAN (P MEAN (m NOTE: M	HI):-0 m):1	.01		SORTING EDIAN (mm) POINT METH	: 0.77				
MOMENT MEAN (P MEAN (m	HI): 0			SORTING	: 1.40				
DATA FI	TE NAM	E: BP988#1	TAB						

DATA FILE NAME: BP988#1.TAB

SAMPLE NO.: BP98-9#1

SAMPLE ELEV. (FT. NGVD): -1.1

SAMPLE DEPTH (FT.): 0.3 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (GRAMS): 55.57

SAMPLE WEIGHT AFTER WASH (GRAMS): 38.79

SAMPLE	WEIGHI	AFIER	WASH	(GRAIN	5):	30.	19		
SIEVE SIZE	PHI SIZE	MESH S		RETAI (GRA			INED		SSED
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.50 3.00 3.50 3.75 4.00	8. 4. 2. 2. 1. 0. 0. 0. 0. 0.	.000 .000 .000 .800 .000 .400 .000 .710 .500 .355 .250 .180 .125 .090 .075	0 0 0 0 0 0 1 1 3 5 13 32 37 46	.00 .00 .00 .00 .09 .21 .36 .64 .17 .86 .37 .69 .56 .48	0 0 0 0 0 0 1 2 3 6 10 23 58 67 84	.00 .00 .00 .16 .38 .65 .15 .11 .35 .06 .19 .92	10 10 10 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	00.00 00.00 00.00 00.00 00.00 09.84 09.62 09.35 08.85 07.89 06.65 03.94 03.94 03.94 03.94 03.94 03.94 03.94 03.94 03.95 03.96 03
PHI (50)	: 1.80): 3.38): 4.16			16): 2 75): 3			PHI (25 PHI (84	-	
	LOSS(g) SS:					SILT KUR'	/CLAY		
GRAPHIC MEAN (I MEAN (I	C METHO PHI): 3 mm): 0 MEAN WA	.21 .11	ULATE:	D USIN		MEDIAN		:	0.64
MEAN (METHOD PHI): 3 mm): 0	.13				SO	RTING	:	0.74

DATA FILE NAME: BP989#1.TAB

SAMPLE NO.: BP98-9#2

SAMPLE ELEV. (FT. NGVD): -2.0

SAMPLE DEPTH (FT.): 1.2 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (GRAMS): 99.73

SAMPLE WEIGHT AFTER WASH (GRAMS) : 83 24

SAMPLE	WEIGHT	AFTER WASH	(GRAMS):	83.24	
SIEVE SIZE	PHI SIZE	MESH SIZE (mm)	RETAINED (GRAMS)	RETAINED (%)	PASSED (%)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	0.00 0.00 1.12 3.19 5.41 8.15 10.82 14.34 18.96 24.12 32.22 44.92 63.45 79.35 82.82 91.41 99.72	0.00 0.00 1.12 3.20 5.42 8.17 10.85 14.38 19.01 24.19 32.31 45.04 63.62 79.56 83.04 91.65 99.99	100.00 100.00 98.88 96.80 94.58 91.83 89.15 85.62 80.99 75.81 67.69 54.96 36.38 20.44 16.96 8.35 0.01
PHI (50	: -1.10): 2.63): 4.10	7.	16): 0.67 75): 3.36	PHI(2)	5): 1.55 4): 3.78
	LOSS(g) SS:			SILT/CLAY KURTOSIS	
MEAN (C METHOPHI): 2 mm): 0 MEAN WA	.02		SORTING MEDIAN (mm) POINT METH	: 0.16
MEAN (METHOD PHI): 2 mm): 0			SORTING	: 1.50

DATA FILE NAME: BP989#2.TAB

SAMPLE NO.: BP98-9#3

SAMPLE ELEV. (FT. NGVD): -3.1

SAMPLE DEPTH (FT.): 2.3 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP

DRY SAMPLE WEIGHT (GRAMS): 118.40

SAMPLE WEIGHT AFTER WASH (GRAMS): 115.05

SAMPLE	MEIGHI	AFIER	WASII	(GICAIN	3).	115.0	,,,	
SIEVE SIZE	PHI SIZE	MESH (mm)		RETAII (GRAI			NED	PASSED (%)
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	8 4 2 2 1 1 0 0 0 0 0 0	.000 .000 .000 .800 .000 .400 .000 .710 .500 .355 .250 .180 .125 .090 .075	0 4 8 15 25 36 49 63 74 91 106 112 114	.64 .82 .03	0. 3. 7. 12. 21. 31. 41. 53. 62. 77. 89. 95.	. 14 . 47 . 74 . 84 . 44 . 94 . 14 . 98 . 15	100.00 100.00 96.48 92.80 87.01 78.13 68.86 58.53 46.26 37.16 22.56 10.06 4.86 3.02 2.85 1.42 0.00
PHI (50)	: -1.80): 0.85): 2.99			16):-0 75): 1):-0.33
	LOSS(g) SS:							2.85%
MEAN (1 MEAN (1	C METHO PHI): 0 mm): 0 MEAN WA	.69 .62	ULATE	D USIN		EDIAN		0.56
MEAN (METHOD PHI): 0 mm): 0					SOI	RTING:	1.45
D3.003 71	TT II 373.4		00110	m				

DATA FILE NAME: BP989#3.TAB

SAMPLE NO.: BP98-10#1

SAMPLE ELEV. (FT. NGVD): -1.3

SAMPLE DEPTH (FT.): 0.5 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (GRAMS): 70.47

SAMPLE	WEIGHT	AFTER WASH	(GRAMS):	55.16				
SIEVE SIZE	PHI SIZE	MESH SIZE (mm)	RETAINED (GRAMS)		PASSED (%)			
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 2.00 2.50 3.00 3.50 3.75 4.00	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	0.00 0.18 0.42 0.73 1.05 1.60 2.60 4.29 9.29 23.78 42.38 52.56 54.76 62.69	33.74 60.14 74.58 77.71	100.00			
PHI (50) PHI (95)): 2.81): 4.13	PHI(PHI(16): 2.07 75): 3.53					
SIEVE LOSS(g): 0.02 SILT/CLAY: 22.29% SKEWNESS: -0.115 KURTOSIS: 0.941								
GRAPHIC METHOD MEAN (PHI): 2.83 MEAN (mm): 0.14 NOTE: MEAN WAS CALCULATED USING 5 POINT METHOD SORTING: 0.91 MEDIAN (mm): 0.14								
MEAN (METHOD PHI): 2 mm): 0	.65		SORTING	: 0.87			
DATA FILE NAME, BD9810#1 TAB								

DATA FILE NAME: BP9810#1.TAB

GRADATION ANALYSIS REPORT BLIND PASS INTERIM DREDGING

TESTED BY: ID

ON: 1/99

SAMPLE NO.: BP98-10#2

SAMPLE ELEV. (FT. NGVD): -2.6

SAMPLE DEPTH (FT.): 1.8 SAMPLE TYPE: CORE SAMPLE

USCS DESCRIPTION: SP-SM

DRY SAMPLE WEIGHT (GRAMS) . 103 49

		IGHT (GRAMS AFTER WASH						
SIEVE SIZE	PHI SIZE	MESH SIZE (mm)	RETAINED (GRAMS)	RETAINED (%)	PASSED (%)			
5/8 5/16 5 7 10 14 18 25 35 45 60 80 120 170 200 230 PAN	-4.00 -3.00 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.50 3.75 4.00	16.000 8.000 4.000 2.800 2.000 1.400 1.000 0.710 0.500 0.355 0.250 0.180 0.125 0.090 0.075 0.063	0.55 1.72 3.44 5.34 6.98 8.36 10.23 12.15 20.21 44.09 75.36 87.42 88.85 96.24	0.00 0.53 1.66 3.32 5.16 6.74 8.08 9.89 11.74 19.53 42.60 72.82	100.00 100.00 99.47 98.34 96.68 94.84 93.26 91.92 90.11 88.26 80.47 57.40 27.18 15.53 14.15 7.01			
PHI(5): PHI(50) PHI(95)	: 2.62 : 4.07	PHI(16): 1.77 75): 3.09	PHI(25 PHI(84	5): 2.12			
	OSS(g)	: 0.01 -1.007		SILT/CLAY KURTOSIS				
GRAPHIC MEAN (P. MEAN (m NOTE: M	HI): 2 m): 0	. 28		EDIAN (mm)				
MOMENT MEAN (P. MEAN (m.	HI): 2			SORTING	: 1.18			
DATA FILE NAME. RD9810#2 TAR								

DATA FILE NAME: BP9810#2.TAB

APPENDIX C GRAIN SIZE DISTRIBUTION CURVES

